Support Points of Locally Optimal Designs for Nonlinear Models with Two Parameters By
نویسندگان
چکیده
We propose a new approach for identifying the support points of a locally optimal design when the model is a nonlinear model. In contrast to the commonly used geometric approach, we use an approach based on algebraic tools. Considerations are restricted to models with two parameters, and the general results are applied to often used special cases, including logistic, probit, double exponential and double reciprocal models for binary data, a loglinear Poisson regression model for count data, and the Michaelis–Menten model. The approach, which is also of value for multi-stage experiments, works both with constrained and unconstrained design regions and is relatively easy to implement.
منابع مشابه
Locally D-optimal Designs Based on a Class of Composed Models Resulted from Blending
A class of nonlinear models combining a pharmacokinetic compartmental model and a pharmacodynamic Emax model is introduced. The locally D-optimal (LD) design for a four-parameter composed model is found to be a saturated four-point uniform LD design with the two boundary points of the design space in the LD design support. For a five-parameter composed model, a sufficient condition for the LD d...
متن کاملOptimal blocked minimum-support designs for non-linear models
Finding optimal designs for experiments for non-linear models and dependent data is a challenging task. We show how the problem simplifies when the search is restricted to designs that are minimally supported; that is, the number of distinct runs (treatments) is equal to the number of unknown parameters, p, in the model. Under this restriction, the problem of finding a locally or pseudo-Bayesia...
متن کاملOn the number of support points of maximin and Bayesian D-optimal designs in nonlinear regression models
We consider maximin and Bayesian D-optimal designs for nonlinear regression models. The maximin criterion requires the specification of a region for the nonlinear parameters in the model, while the Bayesian optimality criterion assumes that a prior distribution for these parameters is available. It was observed empirically by many authors that an increase of uncertainty in the prior information...
متن کاملOptimal Discrimination Designs for Exponential Regression Models
We investigate optimal designs for discriminating between exponential regression models of different complexity, which are widely used in the biological sciences; see, e.g., Landaw (1995) or Gibaldi and Perrier (1982). We discuss different approaches for the construction of appropriate optimality criteria, and find sharper upper bounds on the number of support points of locally optimal discrimi...
متن کاملA geometric characterization of c-optimal designs for heteroscedastic regression
We consider the common nonlinear regression model where the variance as well as the mean is a parametric function of the explanatory variables. The c-optimal design problem is investigated in the case when the parameters of both the mean and the variance function are of interest. A geometric characterization of c-optimal designs in this context is presented, which generalizes the classical resu...
متن کامل